

User Analysis Computing at CDF

Frank Wurthwein

MIT/UCSD/FNAL-CD for the CDF Collaboration

- Computing Model
 - > status
 - Future directions

CDF DAQ/Analysis Flow

(~250 duals)

Frank Wurthwein

Tape Storage

Recon

Production Farm (~150 duals)

Analysis Data

Central Analysis Farm (CAF)

(~300 duals)

Data/Software Characteristics

Data Characteristics:

- > Root I/O: ~80-400 kB/event (configurable content)
- 'Standard' ntuple: 5-10 kB/event
- Typical Runlla secondary dataset size: 10⁷ events
- Winter03 physics: ~100 datasets adding up to ~50TB
- Largest dataset for Winter03 physics: 3.5e7 evts

Analysis Software:

- Typical analysis jobs run @ 5 Hz on 1 GHz P3
 - → few MB/sec
- CPU rather than I/O bound (FastEthernet)

Computing Requirements

Requirements set by goal:

200 simultaneous users to analyze secondary data set (10⁷ evts) in a day

Need ~700 TB of disk and ~5 THz of CPU by end of FY'05:

- \rightarrow need lots of disk \rightarrow need cheap disk \rightarrow IDE Raid
- ightarrow need lots of CPUightarrow commodity CPU ightarrow dual Intel/AMD

Computing Model

Interactive Computing on desktop:

Complete access to all data from desktop via dCache & rootd

Batch Computing on "remote" cluster(s):

- Binary compatible with desktop
- > qsub, qstat, kill, ls, tail, top via command line/web
- Large scale parallelisation with single submission
 - → Single summary email upon completion
- User scratch space inside cluster
 - → Krb5 ticket created @ launch time
- Data access Winter03: 90% NFS+rootd, 10% dCache

Example job submission

Compile, build, debug analysis job on 'desktop'

Fill in appropriate fields& submit job

Retrieve output using kerberized FTP tools ... or write output directly to 'desktop'!

Web Monitoring of User Queues

Each user a different queue

Process type for job length

test: 5 mins

short: 2 hrs

medium: 6 hrs

long: 2 days

This example:

1 job \rightarrow 11 sections

(+ 1 additional section automatic for job cleanup)

tape robot

cache

Terabyte File Servers

CAF Hardware Architecture

interactive

CAF utilization

User perspective:

- > 10,000 jobs launched/day
- > 400 users total
- > 100 users per day

System perspective:

- Up to 90% avg CPU utilization
- > 200-600MB/sec I/O
- Failure rate ~1/2000
- > Avg uptime of WN = 60days

CAF utilization last month

Status @ FNAL Today

User analysis computing based on commodity PC's

180TB disk space 1THz batch CPU

Focus on building strong infrastructure

up to 600MB/sec I/O 99.95% reliability

that has been deployed as part of CDF grid "proof of principle" for SC2002 demo.

Future Directions

CDF grid = 3 pieces

CAF:

- Local cluster management
- Remote submission
- Fully in production: 99.95% reliability

SAM:

- WAN capable DH system
- Use for remote MC production in summer 03

JIM:

- Grid broker (based on condor,globus,sam)
- Proof of principle fall 02

Summary & Conclusions

CDF's computing model makes offsite computing contributions possible.

Offsite contributions, and accounting thereof is desirable.

The devil is in the detail.